
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#***
ECCV

#***

Modelling primate control of grasping for
robotics applications

Ashley Kleinhans, Renaud Detry, Serge Thill, Benjamin Rosman & Bryan
Tripp

Paper ID ***

Abstract. The neural circuits that control grasping and perform related
visual processing have been studied extensively in Macaque monkeys. We
are developing a computational model of this system, in order to bet-
ter understand its function, and to explore applications to robotics. We
recently modelled the neural representation of three-dimensional object
shapes, and are currently extending the model to produce hand postures
so that it can be tested on a robot. To train the extended model, we are
developing a large database of object shapes and corresponding feasible
grasps. Finally, further extensions are needed to account for the influ-
ence of higher-level goals on hand posture. This is essential because often
the same object must be grasped in different ways for different purposes.
The present paper focuses on a method of incorporating such higher-level
goals. A proof-of-concept exhibits several important behaviours, such as
choosing from multiple approaches to the same goal.

Keywords: grasping, affordances, macaque, robotics, AIP, F5

1 Introduction

The neurophysiology that underlies primate grasping has been studied most
extensively in Macaque monkeys. In Macaques, grasping is controlled by an ex-
tensive brain network that includes many parts of the visual, parietal, and frontal
cortices. A network of dorsal visual and parietal areas detects affordances and
may partially parameterize multiple potential movements [1]. Ventral visual and
prefrontal areas help to select movements that are consistent with object iden-
tities and goals [2]. Our general aim is to translate this rich neurophysiological
knowledge into a bio-plausible robotic grasp controller. Specifically, we want
to develop a system that uses a Barrett WAM robotic hand to grasp a wide
range of objects, while reproducing many features of grasp-related neural activ-
ity recorded from monkeys.

In persuit of our goal, we recently developed a neural model [3] that re-
produced a variety of electrophysiology data from the caudal and anterior intra-
parietal areas (CIP and AIP, respectively). These areas encode three-dimensional
shape features, and are essential for accurate hand shaping. This model repro-
duced AIP responses from the Macaque literature using a model of CIP activity
as input. We parameterized AIP responses using both superquadric parameters
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and the parameters of an Isomap reduction of the depth map. We found that
both the match with AIP data and the performance of the CIP-AIP mapping
were better with Isomap parameters. However, it is not yet clear whether such
parameters provide a good basis for grasp planning. For example, in contrast
with the Isomap, superquadrics support a pose-invariant mapping to some grip-
per parameters.

To address this question, we have recently started to extend the model to
frontal area F5 (which encodes hand postures [4]) so that its applicability to
robotic grasp control can be tested. We plan to build a database of grasp exam-
ples in order to train and test this extended model. Building a large database
real robot is infeasible with our research infrastructure, instead we will create the
database in simulation and validate it by executing randomly sampled grasps.
The models trained onto this database will be tested with a real-world robot plat-
form and real objects. We will compare the performance of the neural model to
a conventional kernel regression machine, and to state-of-the-art robotics heuris-
tics for grasp planning. We hope to show that a neural model trained on large
numbers examples can provide a practical grasp controller, and that its internal
signals are consistent with the literature on neural activity in monkey AIP and
F5.

Finally, the main focus of the present paper is on how to further extend the
above models to account for how higher-level goals and intentions from prefrontal
areas can influence the decision of which affordances to attend to (and therefore
which hand-shape to select). The following sections briefly present our approach
and a proof-of-concept model. A notable feature of this proof-of-concept is that
is expressed entirely in vector operations.

2 Methods

Often, different grips are appropriate for manipulating an object for different
purposes. For example, if one’s goal is to put a hammer in a toolbox, there are
many ways in which the hammer can be grasped. However, if the hammer is to
be used to hit nails there is essentially one way. To model such influences we are
forced to consider a much larger network that includes the prefrontal cortex.

The prefrontal cortex is less well understood than the visual cortex, so for
these areas the data-driven approach that we previously adopted to model CIP,
AIP, and F5 may be less practical. We are instead pursuing a top-down approach
based on two key methods. The first is the Neural Engineering Framework [5],
which provides a way to map systematically between high-level function and
neural activity. The second is Holographic Reduced Representations [6], which
are used in cognitive modelling. Recently, these two methods were used together
to develop a spiking neural model of the brain with complex cognitive abili-
ties. The methods are described briefly below. For robotics applications, there
are various ways to run large models of this type in real time, e.g. surrogate
population models on FPGAs [7].
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Neural Engineering Framework An NEF model is specified in terms of vec-
tor variables that are taken to be encoded by the activity of neuron populations,
maps between these vectors, and physiological neuron properties (e.g. time con-
stants). The encoding of a vector by a neural activity is typically modelled as

ri = G
[
eTi x + bi

]
, (1)

where ri is the spike rate of the ith neuron, x is the encoded vector, e is the
direction in the encoded space in which the neuron spikes fastest (the “preferred
direction”), bi is a static bias, and G is a physiological nonlinearity. The encoded
vector x can be approximately recovered, or “decoded” from the spike rates as

x̂ =
∑
i

diri, (2)

where di is called the neuron’s “decoding vector”, and is chosen to minimize
x− x̂. Furthermore, functions f̂(x) of the vector can also be decoded by choosing

different decoding weights that minimize f(x) − f̂(x). This is the basis of NEF
models of neural-network computation. Specifically, if one population encodes x
and a second population encodes y = f̂(x), the synaptic weights that produce

this mapping can be determined by substituting f̂(x) into (1). The result is that
the synaptic weight between the ith presynaptic and jth postsyaptic neuron is
wij = eTj di. Thus, a model can be developed systematically, beginning with a
high-level description of encoded variables and how they are transformed.

Holographic Reduced Representations HRRs represent concepts as vec-
tors. They support operations that are useful for cognitive models including
binding (associating concepts, e.g. associating “dog” with the role of “actor”
in the sentence “dog bites man”); unbinding (e.g. extracting the fact that the
“actor” is “dog”), and bundling (combining multiple bound and/or unbound con-
cepts into a package). HRRs use circular convolution for binding and unbinding,
and vector addition for bundling. HRR operations are lossy, e.g. “actor” bound
to “dog” has the same vector dimension as “actor” or “dog”. Eliasmith (2013)
showed that HRRs can be encoded and manipulated using NEF neural mod-
els, and that HRRs of a few hundred dimensions can store tens of thousands of
concepts.

2.1 Proof-of-Concept Cognitive Model

As a first step in exploring the application of the NEF and HRRs to grasping,
we developed a simplified model that uses basic drives and knowledge of the
environment to choose a goal, and to influence hand posture in a manner con-
sistent with that goal. To simplify the prototype we used abstract HRR vectors
and sigmoidal units, given that the the NEF provides a systematic method to
develop a spiking neural model from a vector model (this does not work with all
vector models, but experience with the NEF suggests that the present model is
a good candidate).
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Fig. 1. Proof-of-concept model and its relationship to our other work. Dashed boxes
indicate HRR populations and a winner-take-all “actions” population. Also shown are
past work (black boxes) and other current work (solid gray box; see Introduction).

Grasping decisions were modelled in the space of the first two principal com-
ponents of gripper parameters. A grid of sigmoidal units corresponded to dif-
ferent postures in this space. Decisions were made using a dffusion-to-bound
mechanism [8], wherein each unit integrates its inputs until one unit’s activ-
ity crosses a threshold, at which point the winning unit (corresponding to a
single posture) inhibits all others. Each input to this network corresponded to
the influence of a different brain area on the posture decision, and consisted of a
drive pattern across the posture grid. Input from a ten-dimensional object-shape
representation was modelled as decoded functions [fij(s)], where s is the shape
parameters and i and j are grid indices. Desired actions were represented in a
200-dimensional HRR. Different actions were nearly orthogonal in this space, so
we used a simple linear map,

[∑
k αijkak

Ta
]
, where a are action vectors and k

is an index over possible actions.

We modelled a scenario in which an agent wants a drink of water given two
potential sources: a bottle and a faucet. The agent must decide which source to
use and the appropriate hand posture for grasping it. While the scope of this
example is somewhat broader than grasp control, we wanted to verify that the
basic approach was suitable for such examples. The input to the model included
a basic “thirst” drive and a list of the objects in the environment (in a more
complete system we take it that these would be detected visually and stored
in working memory). We used HRR binding to associate water with both the
bottle and the faucet. Furthermore, we used several similar vectors to represent
different kinds of water, including cold spring water, warm spring water, and cold
tap water. We used linear maps between HRRs to cause a “thirst” concept in the
“drives” HRR to probe the “environment” HRR for cold spring water, resulting
in selection of the “bottle” concept. Further linear maps between HRRs led to
an “action” HRR encoding “grasp” while the “attended object” HRR encoded
“bottle”. A final linear map from the binding of these two concepts influenced
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the posture network to choose a posture appropriate for grasping the bottle in
order to pour from it.

3 Results

0 10 20 30 40 50

0
10

20
30

40
50
0

0.5

1

PC1
PC2

ac
tiv
ity

Fig. 2. Activation on a grid over the first two principal components of hand posture,
during a decision between postures.

Figure 2 shows a snapshot of activity in the hand-posture network, prior to
a decision. The insets show two postures of the Barrett hand that correspond to
two potential grips. The one on the left is better suited for lifting the bottle in
order to pour from it, and is eventually selected. A different hand posture might
be selected if the goal were different (e.g. to put the bottle in a refrigerator) or
if the object itself was different.

Simulations of this proof-of-concept model demonstrated promising qualita-
tive properties. First, the model incorporated multiple influences into the selec-
tion of a single hand posture. We simulated two specific influences: compatibility
with object shape (from AIP); and compatibility with a specified action (from
frontal areas). These influences could be arbitrarily broad, narrow, multimodal,
etc. Second, the model maps from basic drives to a specific action plan given the
objects in the environment. This mapping is oversimplified, but it verifies that
such a mapping can be implemented using the NEF and HRRs. Third, the model
could choose between multiple routes to the same goal. When we hard-coded the
belief that the water bottle was cold, and searched for something similar to cold
spring water, attention focused on the bottle. Alternatively, when we hard-coded
the belief that the water bottle was warm, attention focused on the faucet in-
stead. We expect that the model could be expanded to include updates based
on sensory information.
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4 Discussion

Two motivations for this research are: curiosity about the primate visuo-motor
systems, and practical interest in robot controllers based on the same principles.
While similar in spirit to the models studied in robotics [9–15], our work aims to
implement affordances, a popular means of formalizing a robotic agent’s inter-
action with the world [16], via a computational model that is compatible with
the mechanisms that govern grasping in the primate brain (see [17] for a model
with similar goals).

HRRs are a key component of the Spaun model, which can perform a wide
variety of sophisticated tasks such as completing patterns from examples. We
take the success of this approach in Spaun to suggest that HRRs provide a
practical way to integrate a wide range of cognitive influences (such as verbal
instructions) into models of neural visuo-motor systems. Our proof-of-concept
model supports this view.
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